

Report No.: S20090702301E-R1

page 1 of 12

Test Report

Applicant: Address:

Mezorrison Health Science & Technology (Shenzhen) Co.,Ltd. No.12 Yuhe Road, Shiyan Town, Baoan District, Shenzhen

The following sample(s) was/were submitted and identified on behalf of the client as:

Product name:	Filtering Half Mask
Model:	MZC-KZ
Trade mark:	Mezorison
Manufacturer:	Mezorrison Health Science & Technology (Shenzhen) Co.,Ltd.
Address:	2nd floor, Gaoke building, No.8 Tangkeng Rd, Shiyan, Baoan district,
N N N	Shenzhen, China
Classification:	FFP2 NR
Sample quantity:	120 Pcs
5. 5. 5.	5 5 5 5 5 5 5 5 5 5
Sample Received 🙏	actor and that the that the

Sample Received
Date:Sep. 07, 2020Testing Period:Sep. 07, 2020~ Sep. 13, 2020

Test Requirement:

According to the requirement of the client, the test item(s) of the sample is according to the standard EN 149:2001+A1:2009.

Test Result(s): Please refer to the following page(s)

Test Method: Please refer to the following page(s)

me

Mark lino

Compiled by:

Reviewed by:

Approved by:

Date:

2020-09-24

Report No.: S20090702301E-R1

Summary of assessment*

Clause Clause	Assessment
7.3 Visual inspection	NRq
7.4 Packaging	Pass
7.5 Material	Pass C
7.6 Cleaning and disinfecting	N.A.
7.7 Practical performance	Pass S
7.8 Finish of parts	Pass +
7.9.1 Total inward leakage	Pass A
7.9.2 Penetration of filter material	Pass
7.10 Compatibility with skin	Pass
7.11 Flammability	Pass C
7.12 Carbon dioxide content of the inhalation air	Pass
7.13 Head harness	Pass S
7.14 Field of vision	Pass +
7.15 Exhalation valve(s)	N.A.
7.16 Breathing resistance	Pass
7.17 Clogging	N.A. 0
7.18 Demountable parts	N.A.

Key 🔨	5 5 5 5 5 5 5 5 5 5
Pass	Requirement satisfied.
NRq	The clauses were not required.
Fail	Requirement not satisfied. Refer to the "Result details" section for more information.
N.A.	Requirement not applicable.

the the test the test the test	Uncertainty
Total inward leakage	6.40 %
Penetration of filter material (NaCI)	1.60 %
Penetration of filter material (Paraffin Oil)	1.78 %
Carbon dioxide content of the inhalation air	5.34 %
Breathing resistance (30 L/min)	3.60 %
Breathing resistance (95 L/min)	2.20 %
Breathing resistance (160 L/min)	2.00 %

Assessment relates only to those specimens which were tested and are the subject of this report.

Report No.: S20090702301E-R1

Test Result

Respiratory Protective Devices — Filtering Half Masks to Protect against Particles — Requirements, Testing, Marking (EN 149:2001+A1:2009)

Clause 7.3 Visual inspection

Test Requirement	Results	Comment	
Marking and the information supplied by the manufacturer,	The clauses were	NDa	
requirements refer to clause 9 and clause 10.	not required.	NRq	

Clause 7.4 Packaging

(EN 149:2001+A1:2009 Clause 8.2)

Test Requirement	Results	Comment
Particle filtering half masks shall be offered for sale		A 4
packaged in such a way that they are protected against mechanical damage and contamination before use.	Comply	Pass

Clause 7.5 Material

(EN 149:2001+A1:2009, Clause 8.2 & 8.3.1 & 8.3.2)

1	Test Requirement	Results	Comment
Ma	aterials used shall be suitable to withstand handling and		The second
we	ar over the period for which the particle filtering half mask	Comply	Pass
is (designed to be used.		5 5
	er undergoing the conditioning described in 8.3.1 none of	5 5 2	5 5 .
the	e particle filtering half masks shall have suffered	Comply	Pass
me	echanical failure of the facepiece or straps.		4 4
W	nen conditioned in accordance with 8.3.1 and 8.3.2 the	Comply	Pass
ра	rticle filtering half mask shall not collapse.	- Comply	1 435
An	y material from the filter media released by the air flow	5 5 2	S - S -
thr	ough the filter shall not constitute a hazard or nuisance	Comply	Pass
for	the wearer.		

Report No.: S20090702301E-R1

Clause 7.6 Cleaning and Disinfecting

(EN 149:2001+A1:2009, Clause 8.4 & 8.5 & 8.11)

Test Requirement	Results	Comment
If the particle filtering half mask is designed to be re-usable,		4
the materials used shall withstand the cleaning and	5 5 .	5 5 .
disinfecting agents and procedures to be specified by the	Not applicable	t t
manufacturer.	(Not designed to	💛 N.A.
With reference to 7.9.2, after cleaning and disinfecting the	be re-usable)	2 4 4
re-usable particle filtering half mask shall satisfy the		* *
penetration requirement of the relevant class.	S' S'	Nº Nº

Clause 7.7 Practical Performance

(EN 149:2001+A1:2009, Clause 8.4)

Test Requirement	Results	Comment
م جلم جلم جلم جلم جلم جلم	Sample 11#~12#:	at at
General:		19 19
a) head harness comfort	2 2 4	2 4
b) security of fastenings	No imperfections	at at
c) field of vision	S'S'.	5 5
d) any other comments reported by the wearer on request.		the state
Walking Test:		Q Q
The subjects wearing normal working clothes and wearing	5. 5. 4	5 6
the particle filtering half mask shall walk at a regular rate of	No imperfections	at at
6 km/h on a level course. The test shall be continuous,		N N
without removal of the particle filtering half mask, for a		L L
period of 10 min.		Pass
Work Simulation Test:	2 2 3	5 2
a) walking on the level with headroom of (1.3 ± 0.2) m for	t x x	xx
5min ~ ~ ~ ~ ~ ~ ~ ~	N N	8 8
b) crawling on the level with headroom of (0.7 \pm 0.05)m for	2 2 2	2 2
5min to the tot to the tot tot		\$ \$
c) filling a small basket (see Figure 1, approximate volume	No imperfections	5 5
= 8 L) with chippings or other suitable material from a	t t t	x x
hopper which stands 1.5 m high and has an opening at the	No King	L' L'
bottom to allow the contents to be shovelled out and a	2 2 4	
further opening at the top where the basket full of chippings		4 4
is returned.	2 2 .	5 5

Shenzhen NTEK Testing Technology Co., Ltd. | Address: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R.China. | Tel: +86-755-36995508 | Fax: +86-755-36995505 http://www.ntek.org.cn Complaint Tel: +86-755-36995510 | Complaint E-mail: complaint@ntek.org.cn

page 4 of 12

NTEK」 比测

Report No.: S20090702301E-R1

Clause 7.8 Finish of Parts

EN 149:2001+A1:2009, Clause 8.2)

Test Requirement	Results	Comment
Parts of the device likely to come into contact with the	No sharp edges or	Pass
wearer shall have no sharp edges or burrs.	burrs	Pass

Clause 7.9.1 Total Inward Leakage

(EN 149:2001+A1:2009 Clause 8.5)

Test Requirement	Results	Comment
For particle filtering half masks fitted in accordance with the	A A	4 4
manufacturer's information, at least 46 out of the 50	5. 5. 4	5 2 4
individual exercise results (i.e. 10 subjects x 5 exercises) for	the the	xx
total inward leakage shall be not greater than:	N. N.	2 E
25% for FFP1	2 2 2	
11% for FFP2	Detail refer to	4 4
5% for FFP3 🔶 🔶		Pass
and, in addition, at least 8 out of the 10 individual wearer	Appendix 1	at at
arithmetic means for the total inward leakage shall be not	A A	4 19
greater than:	5 5 4	2 4
22% for FFP1	t t	at at
8% for FFP2	S' S'	SY SY .
2% for FFP3		

Appendix 1: Summarization of Test Data

Subject	Sample	Condition	Normal Breathing	Head Side/Side	Head Up/Down	Speak Loudly	Normal Breathing	Mean (%)
1	+ 4		(%)	(%)	(%)	(%)	(%)	(70)
Huang	1#	A.R.	3.3	3.4	3.3	3.9	3.2	3.42
Zhou	2#	A.R.	2.5	2.7	2.9	3.0	2.5	2.72
Ма	3#	A.R.	2.2	2.4	2.6	2.8	2.4	2.48
🔨 Wu 🔨	4#	A.R.	3.9 💉	4.0	<u> </u>	4.3	3.7	4.00
Li	5#	A.R.	3.2	3.6	3.6	3.8	3.2	3.48
🖉 Wu 🧹	6#	T.C.	2.7	2.9	3.2	3.5	2.8	3.02
Zhai	7#	T.C.	2.6	2.9	3.4 🔷	3.7	2.7	3.06
Zheng	🖊 8# 📈	T.C.	2.5	2.7	2.9	3.6	2.5	2.84
Huang	9#	T.C.	3.0 🔨	3.7	3.6	4.1	3.1	3.50
Wu	10#	T.C.	3.7	3.9	4.7	4.9	3.6	3.36

Shenzhen NTEK Testing Technology Co., Ltd. | Address: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R.China. | Tel: +86-755-36995508 | Fax: +86-755-36995505 http://www.ntek.org.cn Complaint Tel: +86-755-36995510 | Complaint E-mail: complaint@ntek.org.cn

page 5 of 12

NTEK比测

Report No.: S20090702301E-R1

page 6 of 12

Facia	I Dimension:		t t	* * *	
5	Subject	Length of Face	Width of Face	Depth of Face	Width of Mouth
-	Subject	(mm)	(mm)	(mm)	(mm)
4	Huang	130	140	125	53
	Zhou	100	148	-125 -	55
x	Ma	120	158	110	50
1	Wu 🔨	110	148	121	44
1	Li	112	146	112	50
10	Wu	120	154	128 🖉	54
	Zhai	135	165	125	53
A	Zheng	106	155	112	54
4	Huang 🔬	105	157	118	51
t	Wu	112	172	118	55
N.	N .V	4 4	A A I	4 4 4	A A

Clause 7.9.2 Penetration of Filter Material

(EN 149:2001+A1:2009, Clause 8.11 & EN 13274-7:2019)

5

2

Test Requirement			Results	Comment	
	f the filter of the partic uirements of the follow		AN AN	AN AN	
	Maximum penetration	on of test aerosol(%)	F JE JE	15 15	
Classification	Sodium chloride test 95 L/min	Paraffin oil test 95 L/min	Detail refer to Appendix 2	Pass	
FFP1	20	20	N 8	Nº N	
FFP2	6	6	2 2 1		
FFP3			5 15 15	15 15	
5 5	5 5	5 5 5	5 5	5 5	

Report No.: S20090702301E-R1

Appendix 2: Summarization of Test Data

Penetration of filter material

x x	x x	x x	Penetrati	ion (%)	Assessment
Aerosol	Condition	Sample No.	Average in 30s after 3 min	Max. during exposure	
1 1 1	4 4	13#	0.9	F. Y	2 4 4
AT AT	A.R.	14#	0.8		AT AT
4 4 4	2 4	15#	0.9	F	2 4 4
A A	E E.	19#	0.9		A A
Sodium chloride test	S.W.	20#	0.9		
	IT IT	21#	0.9		I I
4 4 4		25#		0.9	
A A A	M.S. + T.C.	26#		0.9	
	4 4	27#		1.0	
R. R. L		16#	0.5		Pass
	A.R.	17#	0.3	F	+ +
L' L' I		18#	0.3		A R
	t t	22#	0.5	F	* *
Paraffin oil test	S.W.	23#	0.4		
x x	at at	24#	0.3	t it	* *
	4 × 3	28#		3.3	
x x	M.S. + T.C.	29#	at it	4.3	x x
		30#		3.7	
at at	Flow c	onditioning: 95.0	L/min	the the	t t

Clause 7.10 Compatibility with Skin

(EN 149:2001+A1:2009, Clause 8.4 & 8.5)

Test Requirement	Results	Comment
Materials that may come into contact with the wearer's skin	No irritation or any	5 5
shall not be known to be likely to cause irritation or any other	other adverse	Pass
adverse effect to health.	effect to health.	A 15

Shenzhen NTEK Testing Technology Co., Ltd. | Address: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R.China. | Tel: +86-755-36995508 | Fax: +86-755-36995505 http://www.ntek.org.cn Complaint Tel: +86-755-36995510 | Complaint E-mail: complaint@ntek.org.cn

page 7 of 12

NTEK比测

Report No.: S20090702301E-R1

Clause 7.11 Flammability

(EN 149:2001+A1:2009, Clause 8.6)

Test Requirement	Results	Comment
The material used shall not present a danger for the wearer	5 5	5 5
and shall not be of highly flammable nature when tested, the	Detail refer to	A Dave of
particle filtering half mask shall not burn or not to continue on	Appendix 3	Pass
burn for more than 5 s after removal from the flame.	5 5	2 4

Appendix 3: Summarization of Test Data

Flammability	
--------------	--

4	Condition	Sample No.	Result	Assessment
X	A.R.	31#	Flammable, burn for no more than 5 s	* * *
	A.R. 2	32#	Flammable, burn for no more than 5 s	Pass
E.	T.C.	33#	Flammable, burn for no more than 5 s	- rass
A	A A	34#	Flammable, burn for no more than 5 s	at at

Clause 7.12 Carbon Dioxide Content of The Inhalation Air

(EN 149:2001+A1:2009, Clause 8.7)

Test Requirement	Results	Comment
The carbon dioxide content of the inhalation air (dead	Detail refer to	Pass
space) shall not exceed an average of 1.0 % (by volume)	Appendix 4	Fass

Appendix 4: Summarization of Test Data

Carbon Dioxide Content of The Inhalation Air

Condition	Sample No.	Result	4 4	Assessment
* * *	35#	0.27%	Mean value:	4 4
A.R.	36#	0.32%		Pass
	37#	0.35%	0.31%	the state

Report No.: S20090702301E-R1

Clause 7.13 Head Harness

(EN 149:2001+A1:2009, Clause 8.4 & 8.5)

Test Requirement	Results	Comment
The head harness shall be designed so that the particle filtering half mask can be donned and removed easily.	Comply	* * *
The head harness shall be adjustable or self-adjusting and shall be sufficiently robust to hold the particle filtering half mask firmly in position and be capable of maintaining total inward leakage requirements for the device.	Comply	Pass

Clause 7.14 Field of Vision

(EN 149:2001+A1:2009, Clause 8.4)

Test Requirement	Results	Comment
The field of vision is acceptable if determined so in practical	Comply	Pass
performance	Compry	AT 435

Clause 7.15 Exhalation Valve(s)

(EN 149:2001+A1:2009, Clause 8.2 & 8.9.1 & 8.3.4 & 8.8)

Test Requirement	Results	Comment
a) A particle filtering half mask may have one or more	5 5	5 5
exhalation valve(s), which shall function correctly in all	No valves.	t t
orientations.	A A	14 14
b) If an exhalation valve is provided it shall be protected	4 4	P 7
against or be resistant to dirt and mechanical damage and	to to	5 5
may be shrouded or may include any other device that may	No valves.	5 5
be necessary for the particle filtering half mask to comply	the the	
with 7.9.	A A	N.A.
c) Exhalation valve(s), if fitted, shall continue to operate	5. 5.	5. 5.
correctly after a continuous exhalation flow of 300 l/min over	No valves.	at at
a period of 30 s.	Nº N	ST ST
(d) When the exhalation valve housing is attached to the		
face blank, it shall withstand axially a tensile force of 10N	No valves.	15 15
applied for 10 s.	5 5	5 5

NTEK」 比测

Report No.: S20090702301E-R1

Clause 7.16 Breathing Resistance

EN 149:2001+A1:2009, Clause 8.9)

A A A	Test Requirer	Results	Comment		
The breathing resist	ances apply	5 5	5 5		
filtering half masks a	nd shall meet	the the	the the		
following table.	1 1 A	Q LA	Le Le	La La	A LA
	Maximum pe	ermitted resista	ance (mbar)		
Classification	n 🖉 Inhalation 📈		Exhalation	Detail refer to	Pass
2 4 4	30 L/min	95 L/min	160 L/min	Appendix 5	2 2
FFP1	0.6	2.1	3.0		t t
FFP2		2.4	3.0	5 5	5 5
FFP3	1.0	3.0	3.0	- at at	at at
97 97 97	97 .	0 0	97 9		15 J

Appendix 5: Summarization of Test Data

, the best of the second secon				01	01 0	17 .07		07
5 5	Inhalation(mbar)			Exhalation resistance(mbar)				
Specimen	Condition	At 30	At 95	×	At At	160 L/min	A	x
Nº N	N 6	L/min	L/min	A	К В	C	D	Ē
38#		0.4	1.5	2.1	2.1	2.1	2.1	2.1
39#	A.R.	0.4	1.5	2.0	2.0	2.0	2.0	2.0
40#	2 2	0.4	1.4	2.0	2.0 🔷	2.0	2.0	2.0
41#	- *	0.5	- 1.6	2.2	2.2	-2.2	2.2	2.2
42#	S.W.	0.5	1.6	2.2	2.2 🔨	2.2	2.2	2.2
43#	1 1	0.5	1.6	2.2	2.2	2.2	2.2	2.2
44#	AF 1	0.4 🗸	1.5	2.1	2.1	2.1	2.1	2.0
45#	_T.C. <	0.4	1.5	2.0	2.0 🔶	2.0	2.0	2.0
46#	- +	0.4	- 1.5	2.0	2.0	2.0	2.0	2.0
< 1		/	/	1	1	1	/	/
/	F.C.	/	/	1	1	1	/	/
1		/	/	/	/	1	/	/

A: facing directly ahead; B: facing vertically upwards; C: facing vertically downwards; D: lying on the left side; E: lying on the right side

Shenzhen NTEK Testing Technology Co., Ltd. | Address: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R.China. | Tel: +86-755-36995508 | Fax: +86-755-36995505 http://www.ntek.org.cn Complaint Tel: +86-755-36995510 | Complaint E-mail: complaint@ntek.org.cn

page 10 of 12

Report No.: S20090702301E-R1

Clause 7.17 Clogging

(EN 149:2001+A1:2009, Clause 8.9 & 8.10)

\$ \$ \$ \$	Test Requirement	Results	Comment		
Clause 7	.17.2 Breathing resista	5 5 .	5 5		
Valved p	article filtering half mas	the the t	at at		
After clogging the in	halation resistances sh		19 19		
FFP1: 4 mbar, FFF	P2: 5 mbar, FFP3: 7 mb	5. 5.	2 4		
continuous flow The	exhalation resistance s	Requirement not applicable.	drug de		
3 mbar at	160 L/min continuous		N.A.		
Valveless	particle filtering half ma				
After clogging the i	nhalation and exhalation		15 15		
shall not exceed: F	FP1: 3 mbar, FFP2: 4 r	5 5 .	5 5		
🙏 🙏 mbar a	t 95L/min continuous flo	t t t	x x		
Test Requirement			Results	Comment	
Clause 7.17	.3 Penetration of filter n				
All types (valved a	nd valveless) of particle		15 15		
masks claimed to me	eet the clogging require	ment shall also	5 5 .	5 5	
t t me	eet the requirements.	x x a	t at at	AA	
× × ×	Maximum penetrati	St St.	5° 5°		
at at at	Sodium chloride	Paraffin oil test	Requirement not	at at	
Classification	test 95 L/min	95 L/min 📈		🔷 N.A.📿	
2 2	~ % ~	~ % ~	applicable.	5 2	
* * *	max.	max.	+ * *	x x	
FFP1	20	20	N N	Nº Nº	
FFP2	FFP2 6 6 FFP3 1 1		2 2 4		
FFP3			5 45 45	15 15	
2 2	2 2 2	2 2	5 5 .	5 5	
* * *	t t	t t a		* *	

Clause 7.18 Demountable Parts

(EN 149:2001+A1:2009, Clause 8.2)

Ś	Test Requirement	Results	Comment
	All demountable parts (if fitted) shall be readily connected	No detachable	NACT
	and secured, where possible by hand	part 💉	N.A.

Shenzhen NTEK Testing Technology Co., Ltd. | Address: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R.China. | Tel: +86-755-36995508 | Fax: +86-755-36995505 http://www.ntek.org.cn Complaint Tel: +86-755-36995510 | Complaint E-mail: complaint@ntek.org.cn

page 11 of 12

Report No.: S20090702301E-R1

page 12 of 12

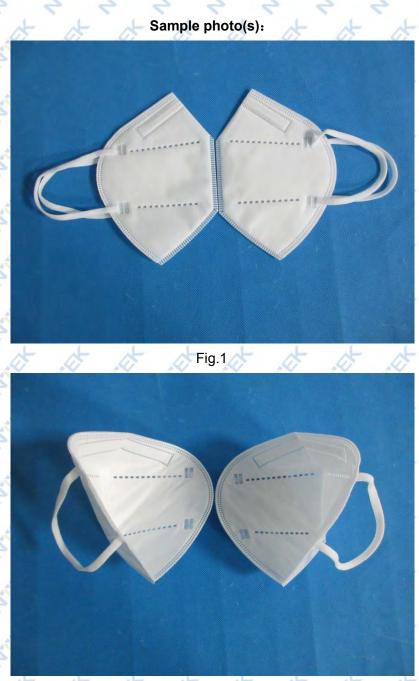


Fig.2

This test report displaces the original report No. S20090702301E, and the original one was invalid since the date of this test report No. S20090702301E-R1 released.

****End of Report****

The test report is effective only with both signature and specialized stamp, the result(s) shown in this report refer only to the sample(s) tested. Without written approval of NTEK, this report can't be reproduced except in full; The laboratory is not responsible for the authenticity of the sample information provided by the customer; The laboratory is not responsible for any deviation of results due to methods/standards provided by the customer.